Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex.

نویسندگان

  • Z Pasman
  • P H von Hippel
چکیده

To terminate transcription in E. coli, Rho protein binds an RNA loading site on the nascent transcript, translocates 5'--> 3' along the RNA in an ATP-driven process, and, upon reaching the transcription elongation complex, brings about RNA release. Thus, the Rho-dependent termination process can be viewed, in part, as a kinetic competition between the rate of transcript elongation by RNA polymerase (RNAP) and the rate of Rho translocation along the nascent transcript. In the context of this model, NusG, which is an essential E. coli protein, regulates Rho-dependent termination in an apparently paradoxical way, increasing the rate of transcription elongation of E. coli RNAP in the absence of Rho while also shifting the sites of Rho-dependent termination upstream on the template. Here we investigate the regulation of Rho-dependent termination by NusG. Analytical ultracentrifugation was used to establish the existence of a stable complex of NusG and Rho and to demonstrate a stoichiometry of one NusG monomer per Rho hexamer. Surface plasmon resonance was used to examine the kinetics of the formation and dissociation of the NusG-Rho complex, yielding an association rate constant (k(on)) of 2.8 (+/-0.8) x 10(5) M(-)(1) s(-)(1), a dissociation rate constant (k(off)) of 3.9 (+/-0.7) x 10(-)(3) s(-)(1), and a calculated equilibrium (dissociation) constant (K(d)) of 1.5 (+/-0.3) x 10(-)(8) M. The apparent stability of the NusG-Rho complex is insensitive to changes in salt (potassium acetate) concentration between 0.05 and 0.15 M. The translocation and transcription termination activities of Rho at saturating NusG concentrations were, however, both sensitive to salt concentration over this range, suggesting that these activities do not directly reflect the stability of the NusG-Rho complex. Rho-dependent termination could be demonstrated for transcription complexes in which E. coli RNAP had been substituted by either bacteriophage SP6 or T7 RNAP. NusG, however, was not active in transcription termination assays with either of these phage RNAPs. Thus, we conclude that NusG modulates Rho-dependent termination by interacting specifically with the RNAP of the E. coli elongation complex to render the complex more susceptible to the termination activity of Rho.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: spectrum of termination efficiencies generated by perturbations of Rho, NusG, NusA, and H-NS family proteins.

The proteins NusA and NusG, which are essential for the viability of wild-type Escherichia coli, participate in various postinitiation steps of transcription including elongation, antitermination, and termination. NusG is required, along with the essential Rho protein, for factor-dependent transcription termination (also referred to as polarity), but the role of NusA is less clear, with conflic...

متن کامل

Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins.

Nascent transcripts in Escherichia coli that fail to be simultaneously translated are subject to a factor-dependent mechanism of termination (also termed a polarity) that involves the proteins Rho and NusG. In this study, we found that overexpression of YdgT suppressed the polarity relief phenotypes and restored the efficiency of termination in rho or nusG mutants. YdgT and Hha belong to the H-...

متن کامل

Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli.

Two pathways of transcription termination, factor-independent and -dependent, exist in bacteria. The latter pathway operates on nascent transcripts that are not simultaneously translated and requires factors Rho, NusG, and NusA, each of which is essential for viability of WT Escherichia coli. NusG and NusA are also involved in antitermination of transcription at the ribosomal RNA operons, as we...

متن کامل

NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator.

Rho-dependent transcription termination at certain terminators in Escherichia coli also depends on the presence of NusG [Sullivan, S. L. & Gottesman, M. E. (1992) Cell 68, 989-994]. We have found that termination at the first intragenic terminator in lacZ (tiZ1) is strongly dependent on NusG when transcription is done in vitro with the concentrations of NTPs found in vivo. With a lower level of...

متن کامل

Transcription is regulated by NusA:NusG interaction

NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 39 18  شماره 

صفحات  -

تاریخ انتشار 2000